Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Briffa, Mark (Ed.)Abstract While female mate choice is well established, mutual choice may play a larger role in mate selection than currently recognized. Assortative mating is a common form of nonrandom mating in animals that can result from mutual choice. However, few studies address assortative patterns beyond the social pair, potentially overlooking assortativity in the mating pair and in the social environment that shapes reproductive decisions. We asked whether North American barn swallows (Hirundo rustica erythrogaster) breeding in a large colony form pairs, mate (through both within-pair and extra-pair fertilizations), and interact assortatively by ventral plumage color, wing length, and age. Social interactions were tracked using proximity loggers, which recorded close contact between tagged individuals when birds were mating and laying eggs. Barn swallows paired and mated assortatively by their ventral plumage color; however, the assortative patterns in mating pairs were not as strong as they were in social pairs. Barn swallows also interacted assortatively, associating more often with individuals of both sexes who had similar phenotypes relative to the other birds in the colony. Finally, older males and females with darker ventral plumage achieved the highest reproductive success. Investigation of assortative behavior beyond the level of the social pair provides a more complete understanding of mate choice and suggests a mechanism that may maintain the large variation in ventral plumage color in North American barn swallows.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.more » « less
-
Gossmann, Toni (Ed.)Abstract Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription-factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.more » « less
-
Springer, Mark (Ed.)Abstract Despite the increasing feasibility of sequencing whole genomes from diverse taxa, a persistent problem in phylogenomics is the selection of appropriate genetic markers or loci for a given taxonomic group or research question. In this review, we aim to streamline the decision-making process when selecting specific markers to use in phylogenomic studies by introducing commonly used types of genomic markers, their evolutionary characteristics, and their associated uses in phylogenomics. Specifically, we review the utilities of ultraconserved elements (including flanking regions), anchored hybrid enrichment loci, conserved nonexonic elements, untranslated regions, introns, exons, mitochondrial DNA, single nucleotide polymorphisms, and anonymous regions (nonspecific regions that are evenly or randomly distributed across the genome). These various genomic elements and regions differ in their substitution rates, likelihood of neutrality or of being strongly linked to loci under selection, and mode of inheritance, each of which are important considerations in phylogenomic reconstruction. These features may give each type of marker important advantages and disadvantages depending on the biological question, number of taxa sampled, evolutionary timescale, cost effectiveness, and analytical methods used. We provide a concise outline as a resource to efficiently consider key aspects of each type of genetic marker. There are many factors to consider when designing phylogenomic studies, and this review may serve as a primer when weighing options between multiple potential phylogenomic markers.more » « less
-
Schaack, Sarah (Ed.)Abstract Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a “refugium” for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome.more » « less
An official website of the United States government
